Suspensions of Bernoulli shifts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak isomorphisms between Bernoulli shifts

In this note, we prove that if G is a countable group that contains a nonabelian free subgroup then every pair of nontrivial Bernoulli shifts over G are weakly isomorphic.

متن کامل

Brooks’ theorem for Bernoulli shifts

If Γ is an infinite group with finite symmetric generating set S, we consider the graph G(Γ, S) on [0, 1]Γ by relating two distinct points if an element of s sends one to the other via the shift action. We show that, aside from the cases Γ = Z and Γ = (Z/2Z) ∗ (Z/2Z), G(Γ, S) satisfies a measure-theoretic version of Brooks’ theorem: there is a G(Γ, S)-invariant conull Borel set B ⊆ [0, 1]Γ and ...

متن کامل

Z Group Shifts and Bernoulli Factors

In this paper, a group shift is an expansive action of Zd on a compact metrizable zero dimensional group by continuous automorphisms. All group shifts factor topologically onto equal-entropy Bernoulli shifts; abelian group shifts factor by continuous group homomorphisms onto canonical equalentropy Bernoulli group shifts; and completely positive entropy abelian group shifts are weakly algebraica...

متن کامل

Positive Entropy Actions of Countable Groups Factor onto Bernoulli Shifts

We prove that if a free ergodic action of a countably infinite group has positive Rokhlin entropy (or, less generally, positive sofic entropy) then it factors onto all Bernoulli shifts of lesser or equal entropy. This extends to all countably infinite groups the well-known Sinai factor theorem from classical entropy theory. We also use our methods to deduce spectral properties of positive entro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dynamical Systems

سال: 2013

ISSN: 1468-9367,1468-9375

DOI: 10.1080/14689367.2013.828680